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Introduction

The research project consisted of three different phases:

* 1) an analytical investigation
During this phase the various reflection processes which can occur when

a plane shock wave reflects over a double wedge were predicted. In addition,
the transition boundaries between the various reflection processes were
established. Finally the domains of the different reflection processes and
their boundoties were drawn in the (0,1, e) - plane for given values of Mi.

2) an experimental investigation-- "

During this phase experiments were'conducted ii-.eto verify the
above mentioned analysis.I ardjtion, some other aspects regarding the
reflection of a plane wedge over a double wedge were investigated

experimentally. In particular, the wave configuration which is approached

asymptotically should be mentioned. The results of this particular

experimental study enables us to four shock polar analysis.

t 3) a numerical investigation
In addition o t e above mentioned analytical and experimental

investigations, a numericai code based on the TVD scheme was developed.
The wave configurations as predicted by the numerical code were compared

with those obtained experimentally and found to be in excellent agreement.
This gave us some confidence in the numerical code and its predictions
regarding the flow field generated during the reflection in general, and the
pressure distribution alring the wedge surface, in particular.
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This report is divided into 3 parts:

Part 1. This part deals with the analytical prediction and the experimental
verification of the domains and boundaries of the various types of the
reflection processes of a plane shock wave over a double wedge.

Part 2. This part includes experiments regarding the wave configuration of
the reflection which is approached asymptotically.

Part 3. This part contains some e! -r- les of the results which were
obtained by the numerical code.



Part 1

Domains and Boundaries of the Various Types of the Reflection
Processes of a Plane Shock Wave Over a Double Wedge

Analyti cal and Experimental Investigation
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INTRODUCTION

Ben-Dor, Dewey and Takayama (1987) have studied, both analytically

and experimentally, the reflection of a planar shock over a double

wedge. In their analytical study they provided a detailed shock polar

analysis of the reflection process, based on the assumption that the

reflection over the second surface of the double wedge approaches

asymptotically the reflection which would have been obtained over a

single wedge with the same wedge angle.

A schematical illustration of a double wedge is shown in figure 1.

81 and 82 are the slopes of the first and second surfaces of the double
w w

wedge, respectively. The difference between these two slopes is

A8 = 82 - 81. If A8 > 0 the double wedge is concave, (figure la), and
w w w w

if A8 < 0 the double wedge is convex (figure Ib).

The domains of different types of reflection process over a double

wedge in the (01, 802)-plane are shown in figure 2. The line AG = 0
w w w

divides the (81, 02)-plane into the domains of concave and convex doublew w
wedgs. Te lie * = 8 det determines the type of reflection over thewedges. The line 81 deemie

firs surace f w th 8t~o refec teinoertshe
first surface of the double wedge. If 81 < 8 then the incident shockw w

wave reflects over the first surface as a Mach reflection (MR), and if

81 > 8det then the initial reflection is regular (RR). The line 82 =
w w w

8det determines the type of reflection which is finally obtained over
w

the second surface. If 82 < 8det then the final reflection over the
w w

second surface is a MR, and if 82 > det then the final reflection over
w w
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the second surface is &I RR. In the case of a concave double wedge (e8

> 0) and a Mach reflection over the first surface (el < ) det) the Mach

stem of the MR reflects eventually over the second surface. The type of

its reflection depends upon whether AG is smaller or greater than 8det
w w

If A8 < 8det then the Mach stem will reflect over the second surfaze
w w

as a MR, and if AO > det then it will reflect as a RR.w w

The above described transition boundaries give rise to seven

domains of different types of reflection processes over a double wedge.

They are numbered 1 to 7 in figure 2 and are summarized in more detail

in table 1.

The three reflection processes which are investigated in this study

are those appropriate to domains 3, 4 and 6, for only in these three

domains the final reflection over the second surface of the double

wedge a MR. In the following a detailed description of the reflection

A
process in each of these three domains is given.

Domain 3

- Since AG < 0, the double wedge is convex.w

- Since 01 < d e t , the incident shock wave reflects over the first
w w

surface as a MR.

- Since e2 < det , the final reflection of the incident shock wave over
w w

the second surface is also a MR.

N.- mmm I |
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A schematical illustration of this reflection process is shown in

figure 3.

Domain 4

- Since AG < 0, the double wedge is convex.w

- Since 81 > 8 d e t , the incident shock wave reflects over the first
w w

surface as a RR.

det
- Since 82 < e , the final reflection of the incident shock wave overw w

the second surface is a MR.

A schematical illustration of this reflection process is shown in

figure 4.

Domain 6

Unlike the previous two cases, here A8w > 0, and therefore the
I detthinietsokwe

double wedge is concave. Since 81 < 8 , the incident shock wave
w

reflects over the first surface as a MR. When the Mach stem of this MR

collides with the leading edge of the second surface, for which

AG < e  it reflects over it as a MR. The two Mach reflectionsw w

interact to create the final MR of the incident shock wave over the

det
second surface, whose slope satisfies 82 < 8 e  A schematical

w w

illustration of this reflection process is shown in figure 5. Note that

the interaction of the two triple points, T. and T2 , at point Q, results

in two triple points: T3 , associated with the MR of the incident shockA
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wave over the second surface and an additional triple point, T,. which

'splits' the reflected shock wave.

The previously mentioned assumption that the MR over the second

surface approaches asymptotically the MR which would have been obtained

by the same incident shock wave over a single wedge with an angle

w= 02 implies that the triple point trajectory angle X of each of the

Mach reflections shown in figures 3, 4 and 5, over the second surface

should approach asymptotically the value which would have been obtained

with the same incident shock wave over a single wedge with an angle

w =2. The verification of this assumption, which is basic to Ben-Dor

et al's (1987) anal.sis, is the subject of the present experimental

study.

Present aLudy

In order to check the foregoing mentioned assumption, an

experimental study was carried out in which the reflection process over

a double wedge was recorded using high speed photography. Details of

the high speed photography technique can be found in the papers by Dewey

and Walker (1975) and Walker, Scotten and Dewey (1982). The system con-

sists of a giant ruby laser which can be pulsed in 50 psec intervals.

The phenomenon was recorded with a rotating-mirror camera. Two experi-

ments with very-nearly identical incident shock wave Mach numbers were

conducted over each double wedge, with the first laser pulse of the

second experiment delayed by 25 psec with respect to the first pulse of

the first experiment so that it was
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possible to obtain multiple schlieran photographs of the reflection

process over a double wedge in 25 psec intervals.

Once the two experiments were recorded, the trajectories of the

triple points and the points where the feet of the Mach stems touch the

reflecting surfaces were digitized. The digitized data were then

evaluated to obtain specific details regarding the direction of

propagation of the various triple points, their velocities and the

velocities of the feet of the Mach stems along the reflecting surfaces.

In order to obtain the values of the triple point trajectory angle,

X, the velocity of the triple point, V and the velocity of the foot of

the Mach stem, VG, to which the MR over the second surface was assumed

to approach asymptotically, the reflection of an incident shock wave

with an identical Mach number over a single wedge with an angle 8 = 02
w w

was recorded. The values of X, VT and VG, which are constant over a

single wedge, were measured directly from the photographs. The triple

point trajectory angle, X, was measured with a protractor to an accuracy

of ±0.5*. The velocities of the triple point and the foot of the Mach

stem were obtained by dividing their respective distances from the

leading edge of the wedge by the time passed from the moment the

incident shock wave collided with the leading edge of the wedge to the

moment the photograph was taken. This time was calculated from

'6 L.

V.
i

where L. is the horizontal distance of the incident shock wave from the
i



leading edge of the wedge and V. is the velocity of the incident shock

wave. The velocity of the incident shock wave was measured by two pressure

4transducers which were separated by 20 cm and were located just ahead of

the test section of the shock tube.

RESULTS AND DISCUSSION

In the following, the experimental results of the foregoing

described study are given for domains 3, 4 and 6 of figure 2. Note that

only the asymptotic wave configuration is given over the second surface.

The wave configurations which are obtained immediately after the reflec-

tion over the first surface interacts with the sudden change in the

110 slope of the surface, are discussed in detail in Ben-Dor et al. (1987).

Domain 3

Experiments with two double wedges which are appropriate to domain

3 of figure 2 were performed. The geometry of the first double wedge

was 01 = 400 and 02 = 25* (A = -15*). The incident shock wave Mach
w w w

number was M. = 1.3.
1

The triple point trajectory angle X and its velocity in terms of

Mach number, MT = V T/a , are shown in figure 6. The triple point

trajectory angle over the first surface which hab a slope of 40* is

X, = 1.20.

After the Mach stem of the MR over the first surface passes the

leading edge of the second surface, the direction of propagation of the

triple point, i.e. 01 + X,, decreases continuously and approaches the

value appropriate to a MR with M. = 1.3 over a single wedge with
s1

w = 250, i.e., X = 6.4. The velocity of the triple point. NT, which

was 1.74 over the first surface is also seen to be decreasing

continuously and approaching asymptotically the value appropriate to a
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single wedge, ie., T = 1.523. The velocity of the foot of the Mach

.W stem MG = V G/a., for this case is shown in figure 7. It is also seen to

decrease continuously from its value of 1.7 over the first surface

towards the value appropriate to a single wedge with 8 = 250, i.e.,
w

MG = 1.387.

At a distance of 18 cm from the leading edge of the double wedge

the triple point trajectory angle X and its velocity MThave almost

reached the values appropriate to a single wedge. However, MG is still

quite far from the asymptotic value it is assumed to reach at this

distance (X and MT are about 1.5% and 1% larger than the asymptotic

values, whereas MG is still about 4.5% too large).

An additional experiment with a double wedge also appropriate to

domain 3 of figure 2 is shown in figure 8. The geometry of the double

wedge is 61 = 350, 82 = 15° (A8 = -20°) and the incident shock wave
w w w

Mach number is again M. = 1.3.i

The experimental results again indicate that after the MR over the

first surface passes the leading edge of the second surface the values

of X, MT and MG decrease towards the values appropriate to a single

wedge with an angle 0w =

Unlike the previous case, here MG is seen to reach its predicted

asymptotic value at about x = 12 cm (x is measured from the leading edge

of the double wedge) while MT and X are still about 1.5% and 4.9% larger

than their assumed asymptotic value-. Note that the ±0.5 ° error bar in

the measured value of X could have resulted in a different curve which



-9-

would still agree with all the measurements but would resemble a faster

4V approach to the assumed asymptotic value. Such a curve is added to

figure 8 in a dotted line. It results in a value which is only about

2.8% higher than the assumed limit.

Domain 4

The experimental results over a double wedge with 81 = 60* and
w

82 = 30* (Ae = -30*) and an incident shock wave with M. = 1.3 are shownw w .

in figure 9. The reflection process over this double wedge starts with

a RR over the first surface. When the reflection point of this RR

reaches the leading edge of the second surface (point B), MR begins and

a triple point forms.

The experimental results in figure 9 again indicate that X, 'T and

MG approach asymptotically their assumed limiting values. At about x

12 cm (x is again measured from the leading edge of the double wedge),

X. MG and MT are about 1.3%, 0.4% and 0.25% larger than their respective

asymptotic values. These small differences imply that the 1R

configuration has almost reached a configuration which would have been

obtained by an incident shock wave with Mi = 1.3 over a single wedge

with e = 300.w

Domain 6

Due to the complexity of the reflection process in this domain

compared to those presented earlier for domains 3 and 4 the experimental

results for this case are shown in a different way than those presented

earlier.
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Figure 10 shows the experimentally recorded trajectories of the

four triple points T., T2, T3 and T. of figure 5. The first triple

point, T,, is obtained when the incident shock wave with M. = 1.3

reflects over the first surface which has an angle 01 = 158. The triple
w

point trajectory angle of T, is x, = 14.8*. When the Mach stem of this

MR collides with the leading edge, point B, of the second surface, which

has an angle 82 = 350, it reflects over it as a secondary MR with triplew

point T2. The experimental results indicate that unlike the trajectory

of T, which is straight, the trajectory of T2 is curved. This is

probably due to the fact that the Mach stem (which serves as the

incident shock wave in the secondary MR, see figure 5) is not a straight

shock wave like the incident shock wave. Instead, it has a concave

curvature. If, however, the trajectory of the T2 is approximated by a

straight line then it forms an angle, X2 . of about 7* with the second

surface. When the two triple points, T. and T2, meet at point Q they

interact to result in two new triple points, T. and T4 . T,, the triple

point of the MR of the incident shock wave over the second surface, is

seen to approach a direction which is parallel to the trajectory which

would have been obtained if an incident shock wave with M. = 1.3 was1

reflected over a wedge with 8 = 35*, i.e., x = 4*. This direction isw

shown in figure 10 by a dash-dotted line. The trajectory of the triple

point T,, on the curved reflected shock wave, is also curved.

The evaluation of the velocity of T. resulted in T3 = 1.659. The

velocity of an appropriate triple point over a single wedge would be
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MT = 1.673. The difference, which is less than 1%, clearly suggests

that the triple point T3 has almost reached the asymptotic value it is

assumed to reach. The velocities of T, and T2, i.e., MT and MT , are
1

1.479 and 1.650, respectively. It should also be noted that the

trajectory of T., which as mentioned earlier is curved, is seen to

approach a straight line. The direction of this line with respect to

the x-axis is 62.9*.

Finally, it is of interest to note that if one assumes that the

Mach stem of the MR of the incident shock wave is straight and

perpendicular to the wedge surface, then the location of point Q where

the trajectories of the first two triple points, T, and T., intersect,

can be calculated analytically using the following geometrical

expression:

sin (AGw + x2)
AQ = L -. (1)

sin (A w + X2 - X,)

where A- is the distance from the leading edge of the double wedge,

point A, to point Q and L is the length of the first surface, i.e.,

L =AB.

Thus the location of Q in the (x,y)-plane is:

XQ = AQ cos (e2 + X,) (2a)

yQ = AQ sin (81 + XI) (2b)

Q
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The analytical solution of the reflection at hand results in:

X2= 13.286* and x2 
= 7.028 (recall that the experimental results were

14.8* and 70, respectively). Inserting these values into equation (1),

together with L = 72 mm yields AQ 140.2 mm. Thus, from equation (2),

one obtains x = 123.4 mm and yQ 66.4 mm. The corresponding measured

results as evaluated from the digitized data are 125 mm and 68 mm,

respectively. The comparison between these results suggests that

equations (1) and (2) could be used to predict quite accurately the

location of point Q where T. and T2 meet.

It should also be mentioned that experiments with M. 1.3 were

repeated using the double wedge configuration at hand, i.e., e = 15,
w

A8 = 20° and 82 = 35*, but with different values of L (L is the
w w

distance from the leading edge of the first surface, point A, to the

leading edge of the second surface, point B). The experimentally

obtained location of point Q agreed with that predicted by equation (1)

and (2) to within 2.5% for all values of L in the range 15< L < 72 mm.

Conclusions

The assumption that the MR of the incident shock wave over the

second surface of a double wedge approaches the MR which would have been

obtained by the same incident shock wave reflecting over a single wedge

with an angle 9w equal to the slope of the second surface of a double

wedge, i.e., 82, was investigated experimentally.

The experimental results clearly indicate that the assumption is

correct. The triple point velocity (including its direction of

propagation) and the velocity of the foot of the Mach stem of the MR



are indeed found to approach the values appropriate to a reflection over

a sie wedge. This behavior can undoubtedly be attributed to the fact

that shock wave stability is the governing mechanism of the phenomenon

at hand.

It is also interesting to note that the experimental results pre-

sented in figures 6-10 indicate that the relaxation length, (i.e., the

distance travelled by the incident shock wave over the second surface

until the asymptotic reflection is nearly obtained) is of the order of a

few lengths of the first surface of the double wedge. If the relaxation

length is defined as the distance at which the reflection has come to

within 5% of the asymptotic values, then the relaxation lengths of the

four cases presented in this study are about 1.25, 2, 3.5 and 1.5 times

the length of the first surface of the appropriate wedge.

As mentioned earlier, an experimental study aimed at investigating

the influence of the length of the first surface on the relaxation pro-

cess revealed that such an influence, if it exists, is minimal.

The present scudy was limited to cases where the reflection of the

incident shock wave over the first and second wedges were supposed to be

either regular or single-Mach reflection. For stronger incident shock

waves both complex and double-Mach reflections might be possible over the

two surfaces. This would undoubtedly complicate the reflection processfS

and might also increase the relaxation lengths. However, it is hypothe-

sized here, that the final reflection over the second surface of a

double wedge will be that which would have been obtained over a single

wedge with the same incident shock wave, no matter if it is a single, a

complex or a double-Mach reflection.



It should also be mentioned that the fact that the shock configu-

rations which are approached asymptotically in the case of a reflection

over a double wedge. are similar to those which would have been obtained

by the same incident shock wave over an appropriate si-nle wedge, does

not necessarily imply that the flow fields are also similar. This can

most easily be justified if one recalls the paper by Ben-Dor and Glass

(1978) where it was shown that different computer codes were capable of

resulting in almost identical wave configurations which differed very

much in their flow fields.

In summary, the present experimental study supports the shock

polar analysis which was presented by Ben-Dor et al. (1987) for study-

ing the reflection process over a double wedge.

V
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l a 2 & eV  First surface Second surface Region

) dot ) dot Regular Regular 2

Convex < dec < det Mach Hach 3

> de < det Regular Mach 4

> det > dec Regular Regular 1

< de > det > dot Mach Regular*Regular 5

Concave
1 < dot < det < dot Mach Mach+Kach 6

< det > de < dot Mach Mach+Regular 7

Table 1
A summary of the seven different reflection processes which can occur over

convex and concave double wedges depending on the magnitude of the wedge angles
62 and AO8 compared to the detachment wedge angle 0e t(referred to simply

as det' above). The numbers in the final column refer to the regions in the e1

Ow plane of figure

V
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Figure 1: A schematical illustration of a double wedge: a) concave; b)

convex.
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Figure 4: A schematical illustration of the reflection process in

domain 4 of figure 2.
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FIGuzz 1. Schematic illustration of (a) regular reflection, and (b) Mach reflection, i. incident shock
wave; r, reflected shock wave; m, Mach stem; a, slipstream; 0, reflection point; T, triple point;

* O,0., reflecting wedge angle; x. triple point trajectory angle; g0, angle of incidence; 9, angle of
deflection; (0)-(3). thermodynamic otatei.
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FIouRE 2. (P,) shock-polar solutiona of (a) regular reflection (1 m 1.3, 60) and (b) Mach
reflection (M, - 2.5,0w - 40* , X - 5.29). The flow states are labelled (0) ahead of the incident
shock wave, (1) behind the incident shock wave, (2) behind the reflected shock wave and (3) behind
the Mach stem. R is the reflected shock polar, and I the polar for both the incident and Mach-stem
shocks which encounter the "me incident flow in a poeudo-steady frame of reference.
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Both RR and MR
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Mt

FiouRz 3. Regions of possible types of reflection in the (3 1 , 0.)-plane. M, in the incident-shock-wave
Mach number, 6. the reflecting wedge angle, and X/' the limiting Mach number separating weak
and strong shocks. For y 1. -,M' 1.4565.
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Fiouzz 4. Two double wedge configurations, (a) concave and (b) convex. 8,, is the first wedge angle,
Ad. the second wedge angle with respect to the first wedge, and 81 the second wedge angle.
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FlorEtz 8. Schematic illuatration of the shock wave reflections over (a) the first and

(b) the second wedge for region I of figure 5.
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Fioussa 7. The shock-polar solution of the shock-wave rftlection process for region I. The polar,
are drawn accurately for an incident shock with Mach number JI, " 1.3, and a double concavr
wedge with inclinations 91 - 47* and M. = 61. IJ', J 0 ' and JG,. R&, are the incident and reflected
shock polam for the peeudo-steady regular reflections over the first and second wedge*. respectively.
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M, I .3, calculated using two-.hock theory.
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*0 FXouit 9. Schematic illustration of the shock-wave reflections over (a) the first and
(b) the second wedge for region 2.
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Fiouits 10. The shock-polar solution of the shock-wave reflection process for region 2. The polars
are drawn accurately for an incident shock with Mlach number M1, - 1.3. and a double convex wedge
with inclinations Og - 60" and 82w - 47". 101, R0 ' and lGI, R 0' are the incident and reflected shock
polar. for the pseudo-steady regular reflections over the first and second wedges, respectively.
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FouRz 11. Subregions of the different regular to regular reflection processes in regions I and 2.
In subregions I a and 2b there will be a transition frosi high to low pressure behind the reflected
shock (H-iL), and in subregions Ib and 2a, a transition from low to high pressure (L-i H).
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FIoURS 12. Schematic illustration of the shock-wave reflection process for region 3. (a) Mach
reflection over the first wedge and (b) Mlach reflection over the second wedge.
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Fioutzz 13. The shock-polar solution of the shock-wave reflection process in region 3. The polars
ae drawn accurately for an incident shock with Mach number M, - 2.5, and a double convex wedge
with inclinations 6w - 60* and 641 - 17*. 1Q, RA' and 10-, Ra' are the incident and reflected shock
X, - 8.270. 1, RT, and 1', Rr, are the incident and reflected shock polars for the pseudo-steady
Mach reflections over the first and second wedges, respectively. The polars are linked by a dashed
line representing the constant pressure of state (I) behind the incident shock.
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Fiaritz 14. Schematic illustration of the shock.wave reflection proeeu, for region 4. (a) Regular
reflection over the first wedge and (b) Mach reflection over the second wedge.
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FIOuRz 15. The shock-polar solution of the shock-wave reflection proces in region 4. The polars
are drawn accurately for an incident shock with Mach number I, = 2.5, and a double convex wedge
with inclinations 01. - 60* and 82. - 40*. The triple-point trajectory angle over the second wedge
is x - 5.29°. 1', R and Tr, RT are the incident and reflected shock polars for paeudo-steady regular
and Mach reflections respectively over the first and second wedges.
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Fiaunit 16. Schematic illustration of the shock-wave reflection Jprovehc for region 5. Q ine the
intersection of the triple-point trajectory with the second wedge. (a) Machi reflection over the irwt
wedge, (b) regular reflection over the second wedge and (c) the shoc-k configurstions after the
incident shock has passeed Q
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FiauRR 17. The shock-polar solution of the shock-wave reflection process in region 5. The polars
are drawn acurately for an incident shock with Mach number M - 2.5, and a double concave wedge
with inclinations 81. - 15° and .6 - 70*. The triple-point trajectory angle is X - 15.7"Z, and the
Mach number of the Mach stem shock is Mm - 2.8. T and RT are the incident and reflected shock
polars for the pseudo-steady Mach reflection over the first wedge. Ia , R l and 10G, RG& are the
incident and reflected shock polars of the pseudo-steady regular reflections over the second wedge,
before and after the intersection of the triple-point trajectory with the second wedge, respectively.
The dashed P4., R&5 polars indicate the probable solution for the regular reflection which permits
the pressure jump from state (4) to state (5) in figure 16. The polar. are linked by the dashed lines
representing the constant pressure in states (3) and (I) of figure 16.
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FIoURE 18. Schematic illustration of the shock-wave reflection process for region 6. (a) Mach

reflection over the first wedge, (6) Mach retfectio r over the second wedge and (C) Mach Mtlection

over the second wedge after the incident shock has passed Q. the point of intersection of the two
triple-point trajectories.
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FiouRz 19. The shock-polar solution of the shock-wave reflection process in region 6. The polar.
are drawn accurately for an incident shock with Mach number MI - 2.5, and for a double concave
wedge with inclinations 81. - 20* and 6Pw - 40*. The Mach number of the Mach-stem shock over
the first wedge is Mm = 2.9, and the triple-point trajectory angles are X, - 12.86, X, - 12.49° and
, - 5.29. 1r, and RT , are the incident and reflected shock polars of the pseudo-steady Mach
reflection over the first wedge. 171, R, and I)T, RI& are the incident and reflected shock polars of
the pseudo-steady Mach reflections over the second wedge, before and after the intersection of the
triple-point trajectories, respectively. The polars are linked by the dashed lines representing the
constant pressures in states (3) and (1) of figure 18.
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FiOUltz 20. Schematic illustration of the shock-wave refection process for region 7. (a) lach

reflection over the first wedge. (b) 11&ch reflection over the second wedge. Q is the intermection of

the triple-point trajectories. (c) Inverse-ach reflection over the second wedge after the incident

shock hu pased Q. (d) Regular reflection over the second wedge after the third triple point T, hs

reached the wedge surface.
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FivOUB 21. The shock-polar solution of the shock-wave reflection process in region 7. The polar.
are drawn accurately for an incident shock with Mlach numbers MI - 2.5. and a concave double
wedge with inclinations ft - 30 and 064 - 60. The Mach number of the Slach-stem shock over
the first wedge is Mm - 3.15. and the triple-point trajectory angles are X,- 8.27. X, " 8- . and
Xs - - 1.12". Ira and R r * are the shock polar for the pseudo-stationary Mach reflection over the
first wedge. jr,, ra and Ir, Rr, are the shock polars for the pseudo-steady Mach reflections over
the seond wedge, before (direct-Mlach) and after (inverse-Mlach) the intersection of the triple-point
trajectories,- respectively. 1 and RG are the shock polar. for the ultimate pseudo-steady regular
reflection over the second wedge. The dashed polar represents the probable solution for the normal
shock which permits the pressure jump from state (8) to (9) in figure 20(d). The polars are linked
by the dashed lines representing the constant pressures in states (1), (3) and (7) of figure 0.
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for an incident shock wave with M, = 1.29±0.01 over a double wedge.
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FIouimi 27. Scliiregi photograph illustrating the Mach reflection on the second wedge following
a Macli reflection on the first wedge for a double wedge in re-gion 3. O' =350 and O0. = w5. Thue

effects of the expansion wave generated when the Mach reflection moves from the tirst to the seond
wedge can be seen.
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Part 2

The Wave Configuration Approached AsyJmptoticaly Following a
Reflection of a Plane Shock Wave Over a Double Wedge

Experimental Investigation



INTRODUCTION

When a planar shock wave encounters a sharp compressive corner, such as the

leading edge of a wedge, two different types of reflection may occur: regular

reflection R (figure la) or Mach reflection MR (figure lb). Regular reflection

consists of two shock waves, the incident shock i and the reflected shock r,

which coincide on the wedge at the reflection point G. Mach reflection consists

of four discontinuities, the incident shock i, the reflected shock r, the Mach

stem m and the slipstream s, which coincide at the triple point T. Over a plane

wedge the triple point moves along a straight line making an angle X with the

wedge surface. The Mach stem is usually curved.

For a given gas, the type of reflection which will occur depends on the

strength of the incident shock, defined by the Mach number Mi, and on the wedge

angle 9w

If a frame of reference is attached to the reflection point of a regular

reflection or the triple point of a Mach reflection, then the nonstationary

regular or Mach reflection becomes pseudo-steady (Jones, Martin & Thornhill

1951), and the shock waves i, r and m can be treated using steady flow theory.

By considering these shock waves separately and using oblique shock wave

relations with appropriate boundary conditions the equations of motion for

regular and Mach reflection can be derived (Ben-Dor, 1978).

In the case of an inviscid regular reflection (figure la) when the frame of

reference is attached to the reflection point, the flow in state (0) moves
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towards the reflection in a direction parallel to the wedge surface and at an

angle of incidence #1 to the incident shock. On passing through the incident

shock wave the flow is deflected towards the wedge surface by an angle 0,. The

flow then passes through the reflected shock wave which deflects it back by an

angle 02 to become again parallel to the wedge surface. Therefore, the boundary

condition for a regular reflection is:

01 - -2 0 o (1)

Thus the flow directions in states (0), (1) and (2) with respect to the

trajectory of the reflection point, G, are:

S- 0, e- = I , and - - 02 - 0, (2)

respectively, where superscript G designates that 0 is measured with respect to

the direction defined by the trajectory of G.

In the case of Mach reflection (figure lb) when the frame of reference is

attached to the triple point T, the flow in state (0) moves towards the

reflection in a direction parallel to the triple point trajectory. The flow

above the triple point trajectory approaches the incident shock wave at an angle

of incidence *1. On passing through the incident shock the flow is deflected

towards the wedge by an angle 01. It then passes through the reflected shock

which deflects it back by an angle e2, parallel to the slipstream. Below the

triple point trajectory the flow approaches the Mach stem at an angle of

incidence #3, and is deflected towards the wedge by an angle 03, also parallel to

the slipstream. Since the flows in states (2) and (3) are parallel and separated

by a slipstream across which there is no change of static pressure, the boundary

conditions for the Mach reflection are:

01 - 02 - 03, and P2 - P3, (3)
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where P is the static pressure. Thus the flow directions in states (0), (1),

(2), and (3) with respect to the trajectory of the triple point, T, are:
-0 ; 01 - (4)

2 1 e2 °, ande3 3

Equations (3) and (4) give;

TJ (5)02 03.

Kawamura & Saito (1956) suggested that, since the boundary conditions (1) and

(3) are in terms of the flow deflection angles, e, and pressures, P, the

relationship between P and 0 may be of importance in understanding shock

reflection phenomena. The graphical representation of the relationship between

the pressure ratio, P/P0 , across an oblique shock and the angle, 0, through which

the flow is deflected by the shock for a fixed value of the Mach number of the

incident flow, M0 , is called a pressure-deflection shock polar.

Figure 2a represents the (P, 0) polar solution of a regular reflection. All

the flow deflection angles, 0 G , are measured with respect to the trajectory of

the reflection point G (see figure Ia). State (0) is represented by the origin,

where P - P0 and -o - 0. The locus of all the flow states which can be obtained

from state (0) by passing through any oblique shock wave is represented by the I

polar. Consequently, state (I) of a regular reflection is represented on the I

polar by the point P - P1 and 
G G. The R polar is the locus of all the flow

states which can be obtained from state (I) by passing through any oblique shock.

Consequently, state (2) which is obtained from state (1) by passing through the

reflected shock wave is on the R polar. The boundary condition (2) implies that

2 - 0, therefore, state (2) is represented by the point where the R polar

intersects the P axis (i.e. 0 a 0) as illustrated in figure 2a.
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Figure 2b represents the (P, 0) polar solution of a Hach reflection. All the

deflection angles are measured with respect to the trajectory of the triple point

(see figure lb). Again, state (1) behind the incident shock lies on the I polar

and is the origin of the R polar, and state (2), behind the reflected shock lies

on the R polar. State (3) behind the Mach stem also lies on the I polar. Since

the pressures and the flow directions with respect to the triple point trajectory

in states (2) and (3) are equal, states (2) and (3) are represented by the

intersection of the I and R polars.

Figure 3 illustrates the regions in the (Mi, OW) plane in which the

different types of reflection are possible or impossible. The regions are

separated by curves A and B. Curve A describes the "detachment" criterion of von

Neumann (1963), and curve B the "mechanical equilibrium" criterion of Henderson &

Lozzi (1975). Hornung, Oertel and Sandeman (1979) used a "corner signal" concept

to show that transition from regular to Mach reflection is best defined by the

"sonic" criterion, namely the condition when the signal speed behind the

reflected shock equals that of the reflection point. The "sonic" criterion is

very close to the detachment criterion, particularly for strong shocks.

For a given gas (i.e., value of the specific heat ratio, y) there is a

certain value of incident shock Mach number, Mi, below which the "mechanical

equilibrium" criterion does not exist. Henderson & Woolmington (1983) have shown

that for a diatomic gas, y - 7/5, M1 - 1.4565 and for a monatomic gas, y - 5/3,

Mi - 1.5487. Incident shock waves with Mach numbers in the range Mi< Mi are

called weak shocks and those in the range Mi> Mi are called strong &hocks.

Figure 3 indicates that for weak shocks there is one region in which regular
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reflection is theoretically impossible (Ow < 0 t) and another region in which

Mach reflection is theoretically impossible (8w> 6detw The regions are

det
separated by the detachment transition line 0 Ow However, for the strong

shocks there is a region, 0< 0det , in which regular reflection is theoretically

impossible; a region , 0 > 0m e

w w , in which Mach reflection is theoretically

impossible, and an additional region, det< . < e *, in which both regular and
w w

Mach reflection are theoretically possible. Dewey and McMillin (1985) have shown

that the assumption of pseudo-stationarity may not be valid for weak Mach

reflections and that realistic shock polars cannot be drawn for this region.

In the case of truly unsteady flows, i.e., flows which cannot be made

pseudo-steady by a simple co-ordinate transformation, the wedge angle at which

transition from regular to Mach reflection occurs depends on the geometry of the

process itself. For example, the MR-*RR transition over concave cylinders occurs

at wedge angles greater than those predicted by the "mechanical equilibrium"

transition line, and the RR HR transition over convex cylinders occurs at wedge

angles smaller than those predicted by the "detachment" transition line. For

both cases the transition angle also depends on the initial angle of incidence

and the radius of curvature of the cylindrical wedges. Details of these

reflection phenomena are described by Heilig (1969), Ben-Dor, Takayama & Kawauchi

(1980), Itoh, Okazaki & Itaya (1981) and Dewey, Walker, Lock & Scotten (1983).

To the beat of our knowledge, no shock wave phenomenon has been recorded yet, in

det tr m.e.which the RRH*R transition occurs at wedge angles in the range 0 de< 0 w< ' e
w w w

A suggested approach to the study of shock wave reflections from concave and

convex cylindrical surfaces is a consideration of the reflection from a double
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wedge with a single increase or decrease of the wedge angle. In the present

paper, seven different shock configurations resulting from the reflection of a

planar shock wave over a concave or a convex double wedge are identified and

investigated analytically and experimentally.

A study of the reflection process over three of the seven possible double

wedge combinations was conducted by Ginzburg & Markov (1975). However, it will

be shown that some of the schematic drawings in their paper, illustrating the

wave configurations, are incorrect. This is probably due to the poor resolution

of their photographic method. Some of their schematic drawings show confluence

points of four shocks, which are known to be theoretically impossible (Courant &

Friedrichs, 1948), and others fail to observe the details of the waves

structure.

Two of the possible Hach configurations over a concave double wedge have

been studied by Katsuo et al (1985) and their observations appear to be in

agreement with the results presented here.

Analysis

The analysis presented below establishes all the reflection processes and

final shock configurations that are possible over any double plane wedge

combination. A compressive and an expansive double wedge are illustrated in

figures 4(a) and 4(b), respectively. The slopes of the first and second wedges

are 01 & 02, respectively, and the slope of the second wedge with respect to thew w
first is

Aew M e2 - e l  (6)

The reflection over a double wedge depends on three parameters: the

incident shock wave Mach number Mi, and the first and second wedge angles 01 and
w

02.
w

In the following analysis it will be assumed that:

1) the flow is two dimensional;

2) the gas is perfect (p - pRT) and ideal (p - 0, k - 0);

3) the flow over the first wedge is pseudo-steady;
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4) the flow over the second wedge aymptotically approaches a pseudo-steady

situation;

5) the regular 4- Mach reflection transition follows the "detachment" criterion,

and

6) the incident shock waves are weak enough so that if the reflection over the

first wedge is a Mach type reflection, it is a single-Hach reflection.

Further assumptions concerning the Mach stems are given subsequently.

For a given shock wave Mach number there is an appropriate "detachment"

wedge angle, det . If 61 < 0det the shock wave reflects from the first wedge as
ww w

a Mach reflection, and if 01 > 0d e t it reflects over the first wedge as a regular
w w

reflection. The Mach or the regular reflection propagates up the wedge until it

encounters the leading edge of the second wedge. If the incident shock wave has

reflected as a Mach reflection over the first wedge, then the Mach stem of this

reflection encounters the second wedge and reflects from it either as a Mach or

as a regular reflection depending upon the size of the differential wedge angle,

A9w, and the Mach number of the Mach stem, M .

In the following analysis it will be assumed that the Mach stem is straight

and perpendicular to the wedge surface so that

cos XiHff -MH (7)

cos (0w + xl)

where XI is the first triple point trajectory angle [Ben-Dor 1980).

Thus Mm > Mi, but the difference in Mach number is not large and it will

therefore be assumed that

odet a det (8)
w IM  w Mi

For example, for Mi - 2.5 and 01 - 20* the Mach reflection solution results in
w
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Xi 12.88, thus H - 2.902. The corresponding detachment wedge angles forU

Hi and M are 50.77" and 50.72, respectively. Similarly, for Hi - 1.775 and

01 - 20" , one obtains X1 - 16.17" and H - 2.112. For this case the
w a

corresponding detachment wedge angles are 50.22 and 50.68. These two examples

indicate that although the difference between the incident shock wave Mach number

and the Mach stem Mach number is about 15%, the difference in the detachment

angle for these shocks is only a fraction of a degree. Using the assumption of

(8), it may be concluded that the Mach stem of the first Mach reflection reflects

from the second wedge as a Mach reflection if, A0 < 0det , and as a regularw a

reflection if AG > 0det .
w w

The lines 0 - 0det 02 _ 0det , AG - 0 and AGw  0 det are all drawn in the

(e1, 82) plane shown in figure 5. These boundary lines define seven regions with

different reflection processes. Those regions above the diagonal, Aew = 0, are

for a concave double wedge, and those below the diagonal are for a convex wedge.

The reflection process in each region and a shock polar solution which gives

information about the pressure changes produced by the reflection process are

presented, beginning with the simplest case and ending with the most

complicated.

The input data for the analysis were the incident shock wave Mach number, Mi

and the double wedge geometry, 01 and AO . The analysis used the two-shock and

the three-shock theories of von Neumann (1963) to determine the shock wave angles

and the thermodynamic properties behind the shocks for each reflection. The flow

properties obtained from the solution were used to draw the shock-polars shown

subsequently, which are accurately drawn to scale.
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Region 1

In this region AO > 0 ; O > Odet, and 02 > Odet , and the reflection
w w V V w

process is shown schematically in figure 6, with regular reflection over both

wedges, but with different wave angles. The regular reflections can be

considered by attaching frames of reference to the reflection points C1 or C2. as

appropriate.

In order to combine the shock polars of the two regular reflections on a

single plot in the (P, eG1) plane it is necessary to know the direction of 02

with resp-ct to G1, namely:

e(02, Gl) _ 02 - el 1 A (9)
w w w

A shock polar solution for a typical reflection process in region 1 is shown

in figure 7 for initial conditions of Hi  1.3, el - 47 and AO - 13.
iw w

The I I and R G  polars represent the regular reflection over the first wedge.

Since the solution of the reflection over the second wedge is in a frame of

reference rotated by the angle O(G2 , GI) with respect to the original frame of

reference, the origin of the IG 2 and RG 2 shock polars combination is located at

0G1 - 0(02, Gl) - AGw. Since 02 > 01, the velocity of G2 is greater than that of

G1, and so the IG2 polar is larger than the IG1 polar. The pressure behind the

incident shock is the same for both reflections and so the points representing

state (1), i.e., the origins of the RGI and RG2 polars, have the same ordinates

in the (P, 0G
I) plane.

The pressure P2 in state (2) behind the reflected shock over the first wedge

is given by the intersection of the RG , polar with the pressure axis, i.e. point

(2) In figure 7, and the pressure P3 in state (3) behind the reflected shock over

the second wedge is given by the intersection of the RG 2 polar with the A0V

ordinate, i.e., point (3). In general P2 * P3, and as the incident shock moves

from the first to the second wedge there will be a sudden change of pressure.



According to Henderson & Lozzi (1975), "If a pressure discontinuity occurs

during transition then an unsteady wave of finite amplitude or a finite amplitude

band of waves will be generated in the flow". We may therefore expect chat the

reflection point on the second wedge will be followed by either compression waves

(or a shock wave) or expansion waves depending upon whether the transition causes

a sudden pressure decrease or increase.

Figure 8 shows the theoretical pressure ratio behind the reflection point of

a regular reflection as a function of the reflecting wedge angle 0 for a given

incident shock Mach number H I - 1.3. The pressure ratio P2/P0 goes through a

minimum at about 0 - 60. Consequently, in the double wedge reflection processw

now being considered three pressure change behaviours are possible. If, in the

example for i W 1.3, 01 - 50" and 02 - 60" then at transition from the first to
w w

the second wedge the pressure behind the reflection point suddenly drops.

However, if 81 - 60" and 02 _ 859 then at transition the pressure behind the
w w

reflection point suddenly increases. There could also be a case for which there

is no pressure change at transition e.g., 01 - 550 and 02 - 65.775. Thus,

w w

different flow patterns are to be expected behind the second reflection point

according to these different pressure changes.

Region 2

In this region Ae < 0; 01 > 0d e t , and 62 > d e t , and the reflection process

is shown schematically in figure 9. The reflection is regular over both wedges,

and can be made pseudo-stationary by attaching frames of reference to the points

of reflection GC and G2 * The direction of the second reflection point 02 with

respect to that of the first, G1, is given by

0 (G2, GI) - Aew (10)
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and for a convex double wedge AG is negative.w

A shock polar solution for a typical reflection process in region 2 is shown

in figure 10, for M - 1.3, 01 - 60" and Ae - -13%

The Ia1 , RG I and 102, R'2 polars represent the solutions of the regular

reflections over the first and second wedges, respectively, with the origin of

IG 2 shifted by Ae in the (P, (Gl) plane so that the 1 2 and RG2 polars are now

to the left of the I I and RGI polars. The pressure in state (1), behind the

incident shock is identical for both frames of reference, and the two-shock-polar

combinations are bridged by the constant pressure line PI which is dashed in

figure 10.

The velocity of G1 is greater than that of 02 and so in the pseudo-steady

C
frames of reference the velocity of the incident flow over the first wedge, N 1,

is greater than that over the second, MG0 2. Therefore, the IG, polar is larger

than the IG 2 polar. The polars again indicate that, in general, the pressure

behind the reflected shock over the first wedge, P2, will be different from the

pressure behind the reflected shock over the second wedge, P3 , which should

therefore be followed by either compression or expansion waves depending upon

whether the pressure suddenly decreases or increases at transition from the first

to the second wedge.

Figure 11 is an enlarged drawing of regions I and 2 of figure 5. The added

dashed line divides each region into two subregions 1 a&b and 2 a&b. In

subregions la and 2b the reflection process involves a transition from a high

pressure regular reflection to a low pressure regular reflection (H - L) while in

lb and 2a, the transition is from a low pressure regular to a high pressure

regular reflection (L + H). Therefore in subregions la and 26 it is expected

that the reflection over the second wedge will be followed by a shock or

compression wave, while in subregions lb and 2a the second reflection is expected
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to be followed by an expansion wave. It is of interest to note that in region la

the pressure behind the reflected shock may be expected to drop as the shock

passes a compressive corner and in region 2a the pressure may be expected to

increase around an expansive corner.

Region 3

In this region AO < 0; 01 < 0det and 02 < 0det and the reflection process
V W w w V

is shown schematically in figure 12. There is a Mach reflection over both

wedges, I-t with different wave angles, and a non-stationary transition region.

The initial and final Mach reflections can be made pseudo-stationary by attaching

frames of reference to the triple points T, and T2 . The direction of T2 with

respect to the direction of the T1 , is given by

6 (T2, TI) - - (- w + Xl - X2), ()

where X, and X2 are the triple point trajectory angles with respect to the two

wedges.

A shock polar solution for a typical reflection process in region 3 is shown

in figure 13. The incident shock wave Mach number is Mi W 2.5. It initially

reflects as a Mach reflection over the first wedge for which 01 - 40* and X, -w

5.29*. AO - -10* and the Mach reflection over the second wedge for which 02 _
V w

30, has a triple point trajectory angle X2 - 8.27*.

The IT 2 and RT2 polars are plotted in the (P, 0T 1) plane, with the origin of

the IT2 polar displaced by (t0w - X1 + X2 )" Since the inclination of the second

triple point trajectory is less than that of the first, the velocity of T2 is

less than that of T, and the Mach number of the incident flow in the

Paeudo-steady frame of reference, MT2 will be less than that over the first

wedge, MTI. The IT2 polar is therefore smaller than the ITI polar. The two

polars are again related by the pressure P1 behind the incident shock, shown as a

dashed line in the figure. It can be seen that the pressure behind the Mach stem
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over the second wedge, P5 , will be less than the pressure behind the Mach stem

over the first wedge, P 3. Because the signal speed, i.e. the sound speed plus

the particle velocity behind the Mach stem is greater than the speed of the Mach

stem, any compression waves will overtake the Mach stem. It is expected,

therefore, that after transition from the first to the second wedge, the Mach

stem shock initially will be stronger than that produced by an incident shock

reflection from a single wedge with an inclination 92, but will asymptotically

approach that value.

legion 4

In this region AO < 0; 81 > 8det and 82 < 9det and the reflection process
w w w w w

is shown schematically in figure 14. The incident shock reflects over the first

wedge as a regular reflection (figure 14a) and ipon encountering the second wedge

there is a transition to a Mach reflection (figure 14b). The initial and final

reflections can be made pseudo-stationary by attaching a frame of reference

respectively to the reflection point G, or the triple point T.

The direction of the triple point T with respect to that of the reflection

point G is given by

0 (T, G) - - (- A w - x) (12)

A shock polar solution for a typical reflection process in region 4 is shown

in figure 15. The incident shock wave (Mi - 2.5) reflects over the first wedge

(01 - 60") as a regular reflection. However, since AGw - -20, the second wedge,

02 - 40, cannot support a regular reflection, and a Mach reflection with X "

5.29" is finally established over it.

The I and R shock polars represent the regular reflection over the first

wedge, and the origin of the I and RT shock p)lars, which represent the Mach

reflection over the second wedge, are displaced by (AO + X), which is negative.V
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The constant pressure P1 behind the incident shock again bridges the two sets of

polars. For this case the velocity of G is greater than that of T so that M is

T G T
greater than MO and the I polar is larger than I polar.

In general the pressure P2 behind the reflected shock over the first wedge

will be different from the pressure P4 behind the Mach stem over the second

wedge. A transition period is expected after the incident shock moves from the

first to the second wedge with expansio" nr compression waves which will

dissipate through the flow. It is not L..acted that these waves will persist as

is predicted for the reflections in regions 1 and 2, and the Mach reflection over

the second wedge will asymptotically approach that which would be produced if the

incident shock had reflected from a single wedge with an inclination 02 .
w

Region 5

In this region AGw > 0; 8l < adet; AO > 0det and 02 > 6 det I and the

reflection process is shown schematically in figure 16. The Incident shock

reflects over the first wedge as a Mach reflection (figure 16a). The Mach stem

of this reflection reflects from the second wedge as a regular reflection (figure

16b). The triple point T and the reflection point G0 of the Mach and regular

reflections interact at point Q on the second wedge surface to form a new regular

reflection, with reflection point G2 (figure 16c).

The reflections can be made pseudo-stationary by attaching frames of

reference to the triple point T, or the points of reflection G, and G2, as

appropriate. The direction of the reflection points G and 02 with respect to

the direction of the triple point T are given by

0 (GI, T) - Aew - X , and (13)

0 (G2, T) - AOw - X (14)
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A shock polar solution for a typcial reflection process in region 5 is shown

in figure 17. The incident shock wave (Mi - 2.5) reflects over the first wedge

(01 - 15*) as a Mach reflection with X - 15.72. The Mach number of the Mach

stem of this reflection is M - 2.8. Since AO - 55', the Mach stem reflectsm w

over the second wedge as a regular reflection. Finally, the incident shock wave

( i " 2.5) encounters the second wedge (62 - 70') from which it reflects

regularly.

The IT and RT shock-polars represent the Mach reflection solution over the

first wedge. Since the solutions of the two regular reflections over the second

wedge are made from a frame of reference which is displaced by the angle

0 (Gl, T) or 0 (G2, T) with respect to the original frame of reference, the

origins of the I~l, R0 land the 102. R0 2 shock polars, which represent the

Tregular reflections over the second wedge are located at 0 - O(GIT) - G(G2,T) -
AG - X. Since the pressures in states (1) and (3) are independent of the frame

W
of reference from which the solution is carried out, the IT, RT and I11, R I

shock polars are bridged by the constant P3 line, and the IT , RT and I 2, RG2

shock polars are bridged by the constant Pi line, which are dashed in figure 17.

The shock polars in Figure 17 indicate that the transition on the second

wedge at point Q is associated with a sudden decrease in the pressure from P4

behind G1 to P5 behind G2. It will be shown subsequently that this sudden

pressure drop is supported by an additional regular reflection, that of the

reflected shock wave of the Mach reflection over the first wedge. This secondary

regular reflections follows the main regular reflection over the second wedge.

This additional regular reflection is drawn schematically in figure 16c with

reflection point G3. It is expected that the overall pressure jump across this

additional regular reflection should be close to P4 /P5 . A dashed I 3, R 3 polar



17

combination representing this regular reflection is added to figure 17.

It will be shown subsequently that as this secondary regular reflection

propagates up the wedge its reflected shock catches up with its incident shock

to finally form a single shock wave normal to the wedge surface.

Region 6

In this region AB > 0; 01 < 0det; A < 0 det, and 02 < 0det , and the

V V V W w W w

reflection process is shown schematically in figure 18. The incident shock

reflects over the first wedge as a Mach reflection (figure 18a), and the Mach

stem of this reflection reflects from the second wedge also as a Mach reflection

(figure 18b). The triple points T1 and T2 of these two Mach reflections,

intersect at Q to form a direct Mach reflection (figure 18c), for which the

triple point moves away from the second wedge surface. Therefore, the Mach

reflection is maintained. It is assumed that these three Mach reflections can be

made pseudo-stationary by attaching frames of reference to their appropriate

triple points. The directions of T2 and T3 with respect to the direction of T!

are given by

e (T2, TI) - AOw + X2 - X1 (15)

and,

0 (T3, T I) - Aew + X3 - X1 (16)

A shock polar solution for a typical reflection process in region 6 is shown

in figure 19. The incident shock wave (Mi W 2.5) reflects over the first wedge

(01 - 20*) as a Mach reflection with X, - 12.85*. The Mach number of the Mach
w

stem of this reflection is N3 -2.9. Since Aaw - 20, the Mach stem r flects
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over the second wedge as a Mach reflection with X2 - 12.42". Finally, after the

interaction between the two triple points, at Q, the incident shock wave (Hi -

2.5) forms a Mach reflection over the second wedge (e2 - 40) with X3 - 5.29".

The 1T1 and RTI polars represent the Mach reflection over the first wedge

and the origins of the IT2, RT2 and IT3, RT3 polars, for the second and third

Mach reflections are located at 0TI = e (T2, T1 ) and OTI - G(T3, 
TI)

respectively. Since the pressures in states (1) and (3) are independent of the

frame of reference, the IT1, 1 TI and IT2
, RT2 polars are bridged by the constant

P3 line, and the IT,, T1 and IT3, RT3 polars are bridged by the constant Pi

* line, which are dashed in figure 19.

The changes of pressure along the wedge from PS to P7 at the time when the

triple points T1 and T2 interact at Q and form the third Mach reflection with a

different Mach stem, will result in the generation of compression or expansion

waves but these are expected to dissipate in the flow and not to persist as in

regions 1 and 2.

Region 7

6det < det det
In this region AG > 0; 6!1 < 0  AG < e and 02 > 0 and thew w w w w w ii

reflection process is shown schematically in figure 20. The incident shock

reflects over the first wedge as a Mach reflection (figure 20a), and the Mach

stem reflects from the second wedge also as a Mach reflection (figure 20b). The

triple points T1 and T2 intersect at Q to form a third Mach reflection (figure

20c). Unlike the reflection in region 6, the new triple point T3 moves towards

the second wedge surface, i.e., the Mach reflection is an inverse-Mach reflection
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(Takayama & Ben-Dor (1985)). Upon colliding with the wedge surface, the

inverse-Hach reflection transitions to a regular reflection, which continues to

propagate up the wedge (figure 20d).

It is assumed that the three Hach reflections and the final regular

reflection can be made pseudo-stationary by attaching a frame of reference to the

appropriate triple points Ti, T2 or T3, or the reflection point 0. The

directions of T2, T3 and G with respect to the direction of T, are given by

0 (T2 , Tj) - AO + X2 - XI; (17)

e (T3 , Tj) - [- Aw + X3 + x), (18)

0 (G, T1 ) - Aew - X1  (19)

A shock polar solution for a typical reflection process in region 7 is shown

in figure 21. The incident shock (Hi - 2.5) reflects over the first wedge

(01 - 30*) as a Hach reflection with X- 8.27*. Since AOw - 30, the Mach stem
w

(Hm  3.15) reflects over the second wedge as a Mach reflection with X2- 8.09 ° .

Eventually, the two triple points intersect at Q and the incident shock

(Mi - 2.5) propagates over the secondary wedge (6) - 60°) from which it reflects

regularly.

The IT1 , RT1 shock polars represent the Mach reflection solution over the

first wedge, and the origins of the IT2 , RT2 and IT3 , RT3 shock polars, which

represent the second and the third Mach reflections are located at 0 T1 - 0 (T2,

TI) and T - (T3 , Tj), respectively. Since the pressures in states (1) and

(3) are independent of the frames of reference, the 1T1 , RTI and 1T2 , R
T 2 shock

polars are bridged by the constant P3 line, and the 1T1 , RT1 and 1T3 , RT3 shock

polars are bridged by the constant PI line. Since the third Mach reflection is

an inverse-Mach reflection, its polar solution (states 6 & 7) takes place on the

left part of the 1T3 polar (for details see Takayama & Ben-Dor 1985). For

clarity, parts of the IT3 polar have been omitted from figure 21.
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The origin for the final regular reflection is at eT ! - 0 (G, T,). The I

RG polar combination which represents the regular reflection is also bridged to

the IT I , RTi polars through the constant P1 line.

The shock polars in figure 21 suggest that a sudden pressure drop will occur

from P7 just before the termination of the inverse-Mach reflection, to P8. just

after the formation of the regular reflection. It was found experimentally that,

unlike the case, in region 5, where the sudden pressure drop is supported by a

secondary regular reflection (figure 16c), here it is supported by a normal shock

wave which follows the regular reflection. This normal shock wave is shown in

figure 20d. It is expected that the pressure Jump across this normal shock wave

should be close to P6 /P8 . A dashed polar representing this normal shock wave is

added to figure 21. In figure 20 the state behind the normal shock wave is

labled as state (9), and hence the pressure jump across it is P9 /Pg, however

states (9) and (6) and states (6) and (7) are separated by slip-streams and hence

P7 
= P9.

Experimental Investigations

The reflection of plane shock waves from concave and convex double wedges

was studied experimentally using the 7.6 cmx25.4 cm shock tube of the Department

of Physics at the University of Victoria, Canada, and the 7.6 cmxl2.7 cm shock

tube of the Institute of High Speed Mechanics, Tohoku University, Japan. The

objectives of the experimental studies were to establish the conditions for

transition from regular to Mach reflection or Mach to regular ;eflection

(RR + MR) for concave and convex double wedges; to verify the existence of the

seven reflection processes predicted in the foregoing analysis, and to verify the

predictions of the shock polar analysis concerning the wave configurations
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following the major reflections. These objectives were achieved usirg various

high speed photographic techniques such as contact shadowgraphs, multi-frame

schlleren and holographic interferometry.

RR + MR transition wedge angle

Using nominal incident shock Hach numbers of 1.3 and 2.45, the angle of the

second wedge at which RR + MR occured, was determined. Experiments were

conducted using double wedges, similar to those shown in figure 4. Depending

upon the final reflection which was observed over the second surface, the second

wedge angle, 62, was increased or decreased by tilting the double wedge until

the reflection over the second surface changed from MR to RR or from RR to MR.

The lowest value of 62 for which RR was observed, and the highest value of
w

82 for which MR was observed were averaged to give an estimate of 6tr and the
V w

associated uncertainty.

In the "weak" shock experiments there were small variations in the incident

shock Mach number from experiment to experiment but all were in the range 1.28 <

Mi 1.30. The theoretical detachment tra-sition wedge angle for this range of

Mach numbe s is 45.899* 4 0de tw 46.34"*. The wedge angles, Ow , at which

transition was observed on the second wedge are plotted as a function of AG w for

a concave double wedge in figure 22a. At t10 - 0, i.e., the case of a straight

single wedge, the measured value of etr '9 about 1.5* smaller than the
w

theoretical detachment value. This observation is in accordance with

experimental results of many other investigators and is probably due to boundary

layer effects. The same value is obtained at A6 - 44.5o which again representsw

the case of single straight wedge, since for this case 01 - 0.

For the specific incident shock Mach number of these experiments,
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M, - 1.29 t 0.01, the transition angle, 0tr reaches a maximum of approximately
w

49.5" for a double wedge with AOw - 25". It is interesting to note that in the

range 0 4 AG 4 25" there appears to be a linear relationship between Gtr and
w w

AG . The overall relationship between etr and AO for a concave double wedge mayw w w

be compared with that between 0tr and R, the radius of curvature of a concave
w

cylindrical wedge for which the transition angle is also greater than that over a

single plane wedge (Ben-Dor, Takayama & Kawauchi 1980).

The measured tranaition wedge angles for a strong shock wave (xi > M) over

a concave double wedge are shown in figure 22b. For these cases M - 2.45 ±

0.01. The transition wedge angles for AOw - 0 and AOw = 490 which orrespond to

a single straight wedge are about 1.7" below the value predicted by the

"detachment" criterion (edet - 50.77*). This persistence is probably due to
w

boundary layer effects. As AGw increases the transition wedge angle becomes

higher until it reaches a maximum of 0 tr , 59.50 at AG - 30*. This value of
w w

tr is greater than the "mechanical-equilibrium" transition wedge angle for this
w

Mach number (0m
'e.. 58"). For AO > 30° the transition wedge angle decreases

W W

until it reaches the value appropriate to a single wedge at AOw = 49
°. It should

be noted that for this case of a strong incident shock wave the transition wedge

angles lie between the "detachment" and the "mechanical-equilibrium" transition

wedge angles. To the best of our knowledge this is the first time that the RR +

KR transition has been observed in this range of wedge angle.

Figure 23 shows the observed transition wedge angles, 0tr, as a function of

AG for a convex double wedge and an incident shock Mach number of 1.29 ± .01 .
w

In this case AO - 0 corresponds to the single wedge case with 0tr . 44.5 ° . For
w w

decreasing values of LG the transition angle decreased to a minimum of aboutw
43.25" for AG in the range from -20" to -35", and then returned to 44.5" at

w
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A - - 45.5, which also corresponds to a single straight wedge. The variationw

of 0tr with 60 over a convex double wedge may be compared with the variation of
w w

atr with the radius of curvature of a convex cylinder for which the observed
w

transition angle is also less than the theoretical detachment angle, 0 det , andw

the observed transition angle on a straight wedge (Ben-Dor, Takayama & Kawauchi

1980).

The observed transition wedge angles presented in figures 22a and 23 were

used to modify the boundaries between regions 6 and 7, and 2 and 4 in figure 5,

and the modification is presented as figure 24.

Experimental Verification of the Reflection Processes

Experiments were carried out using combinations of wedge angles

representative of each of the seven regions defined by figure 24, using a nominal

incident shock Mach number of 1.3. The shock reflections were observed using two

photographic methods: multiple double-pass laser schlieren at a framing rate of

approximately 20,000 pps., and single frame contact shadowgraphy. In each case

the exposure time per frame was approximately 50 ns. The shadowgraphs produced

very high quality distortionless pictures, but -hey did not reveal details of the

density variations behind the shocks to L.... -4me degree as the schlieren

photographs. The double-pass schlieren system has been described by Dewey and

Walker (1975). The normally reflecting mirror in this system has a 1 cm grid of

small holes through which smoke can be injected as a flow tracer. Smoke was not

used in the experiments discussed here, but the holes served as a grid of

fiducial markers.
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legion 1

The final reflection process in this region is shown in figure 25 for

01 - 550 and 62 - 75° . The regular reflection over the first wedge encounters
V V

the second compressive wedge, and the flow is compressed. The compression waves

generated at the corner merge into two circular shock waves. One propagates

upstream and follows the reflection point of the regular reflection and the other

propagates downstream. They are both perpendicular to the wedge surface. These

two circular shock waves interact which the reflected shock wave of the second

and first regular reflections to form two triple points. The slipstreams of

these triple points coincide at a point on the wedge. This point propagates

upstream along the second wedge surface. The information about the change in the

slope of the surface is probably bounded by these two shock waves.

legion 2

The final reflection process in this region is shown as a schlieren

photograph in figure 26 for 01 - 65* and 02 - 50. The regular reflection over
w w

the first wedge encountered an expansive corner which generated expansion waves,

which can be seen in the figure, one propagating downstream just behind the

reflection point, and the other propagating upstream along the first wedge, the

combination of 01 and 02 in this experiment lies in region 2a of figure 11 and it
w w

is expected that the pressure in the small region behind the reflected shock and

the rarefaction is at a higher pressure than behind the reflected shock on the

first wedge.
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Region 3

The schlieren photograph of the unsteady wave system, generated when the

first Mach stem encounters the sudden change in the slope of the surface is sovn

in figure 27 for 01 - 35* and 02 _ 15". A rarefaction wave is seen to be
w w

travelling backwards carrying the information about the sudden change in the

model geometry. This corner signal causes the readjustment of the wave angles of

the second Mach reflection needed to negotiate the new slope of the second wedge.

As the rarefaction produced at the corner advanced up the first Mach stem it

produced a weaker shock over the second surface. The contact surface separating

the gases behind the stronger and weaker shocks, until the rarefaction reached

the triple point, can be clearly seen in figure 27.

Region 4

The final reflection process in this region is shown in figure 28 for

01 - 60* and 02 - 30. The regular reflection over the first surface encounters
W w

the sudden change in the slope and forms a Mach reflection over the second

surface. The razcfaction wave generated at the corner, carries the information

about the sudden change in the wedge geometry and causes the reflection to adjust

its wave angles to negotiate the new slope of the second wedge.

Region 5

The reflection process in this region is shown in figures 29a to 29e for

01 - 20" and 92 - 75. The Mach reflection over the first wedge is shown in
w w

figure 29a. Its collision with the second wedge results in a regular reflection

(figure 29b). The triple point of the Mach reflection over the first wedge and

the reflection point of the regular reflection of the Mach stem over the second
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wedge interact on the second wedge. Figure 29c was recorded shortly after this

interaction. The reflected shock wave of the Mach reflection now lags behind the

incident shock wave. A clearer configuration of the wave system ac a later time

is shown in figure 29d. The incident shock wave reflects from the second surface

regularly. The reflected shock of the original Mach reflection reflects

regularly from the second surface, and follows the major regular reflection. As

this secondary regular reflection propagates along the wedge the wave angles of

the incident and reflected shocks change until they merge together and form a

single shock normal to the reflection surface, as shown in figure 29e.

Region 6

The reflection process in this region is shown in figures 30a to 30c for

61 - 15" and 82 - 35. The Mach stem of the Mach reflection over the first wedge
w w

reflects from the second wedge also as a Mach reflection (figure 30b). The two

triple points later interact (figure 30b) resulting in a direct Mach reflection

of the incident shock wave over the second wedge. A second triple point is

formed at the intersection of the two reflected shock, as shown in figure 30c,

but the slipstream from this triple point is not visible in the shadowgraph.

Region 7

The reflection process _n this region is shown in figures 31a and 31b for

01 - 250 and 02 - 60. The Mach stem of the Mach reflection over the first wedge
w w

reflects over the second wedge as a Mach reflection (figure 31a). The two triple

points interact to give an inverse-Mach reflection (Takayama & Ben-Dor, 1985),

i.e., its triple point propagates towards the second wedge surface. When it

meets the
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second surface the inverse-Mach reflection terminates and a regular reflection is

formed, as shown in figure 31b. The reflection is followed by a shock wave

which is perpendicular to the second wedge surface, and which meets the reflected

shock at a triple point. Another triple point is generated by the reflected

shock waves of the two Mach reflections. The slipstreams of the two triple

points can be seen in the shadowgraph of figure 31b.

The final wave configuration shown in figure 31b is similar to the one

finally obtained through the reflection process of region 5. However, the normal

shock wave in region 6 was established at the moment the inverse-Mach reflection

terminated at the wedge surface, while in region 5 the initial reflection is a

regular reflection which degenerates into a normal shock wave.

Conclusions

The reflection processes of a plane shock wave over a concave or convex

double wedge, have been analyzed using the basic concepts of the reflection of a

plane shock wave over a single wedge. It was found that there are seven

different reflection processes, which are summarized in Table I.

To simplify the analysis of the shock reflection processes a number of

assumptions were made, namely, that transition between regular and Mach

reflection would take place according to the theoretical "detachment" criterion;

that all Mach stems would be straight, and that the same "detachment" transition

angle could be used for both the incident and Mach stem shock waves. It is known

that transition between regular and Mach reflection over a wedge does not occur

at the angle predicted by theory; that for most shock strengths the Mach stem

shock is curved, and that there will be a slight difference in the transition
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angle for the incident and Mach stem shock waves. Nevertheless we believe that

the shock reflection processes described here are qualitatively correct.

For each of the seven reflection processes a shock polar analysis was

carried out. These analyses have provided information about the detailed wave

structures following the main reflections along the wedge surfaces, and have made

it possible to identify the sudden pressure changes as the reflections moved from

the first to the second wedge. The different reflection pr ceases predicted by

the analysis, and the shock structures predicted by the shock polars have all

been verified experimentally using shadowgraph and schlieren photographs. The

shock waves which support the sudden pressure changes produced by some of the

transitions and predicted by the shock polar solutions, have been observed. In

some cases these shocks are normal to the reflecting surface and in other cases

they are regularly reflected shocks. The criteria to determine which of those

configurations will occur, have not yet been established, but are the subject of

continuing studies.



e w2  AOw  First surface Second surface Region

> det > det - Regular Regular 2

Convex < det < det - Mach Mach 3

> det < det - Regular Mach 4

> det > det - Regular Regular 1

< det > det > det Mach Regular+Regular 5

Concave
< det < det < det Mach Mach+Mach 6

< det > det < det Mach MacheRegular 7

Table 1
A summary of the seven different reflection processes which can occur over

convex and concave double wedges depending on the magnitule of the wedge angles
el 02 and AGw compared to the detachment wedge angle 0et (referred to simply
as 'det' above). The numbers in the final column refer to the regions in the e,
62 plane of figure 5.
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Part 3

Numerical Investigation of the Reflection of a Plane Shock Wave
Over a Double Wedge



As mentioned earlier a numerical code based on the TVD scheme was

developed. In the following, twelve examples are illustrated. The initial

conditions for each of the twelve cases are given in Table I. Each example
consists of 5 figures, and one table, namely;

- the actual interferogram of the experiment
- the values of the labelled isopycnics

- the numerical simulation
- the pressure distribution along the wedge
- the density distribution along the wedge.
The pressure and density distributions along the wedge were obtained using

the numerical simulation.

Similar plots of the distribution of any flow property at any place and

at any time can easily be obtained byA the numerical code.



Table I- The initial conditions of the 12 cases shown in the following

Case Ms PoIKPa 92 [lol Jw[l

1 1.95 50.7 55 20
2 1.96 50.7 25 35
3 2.16 30.4 J0 75

4 1.96 50.7 15 20
5 2.16 50.7 15 20
6 2.16 30.4 60 -30
7 2.17 30.4 35 -20
8 1.49 66.9 35 -20
9 2.16 30.4 40 -15
10 1.50 66.9 40 -15
11 1.47 66.9 40 -15
12 1.47 66.9 65 -15



.- 4 - .. O

- I,-

it.:
'j, ti. l



f ri nge
a 4.1388
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c 4.3040
d 4.3866
e 44692
f 4.5518
g 4.6344
h 4.7170
i 4.7996
j 4.8822
k 4.9648
1 5.0474

m 5.1300
n 5.2126
o 5.2952
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Case 3

fLdn ge ~
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Case 4

fringe
a 3.0650

b 3.1476
c 3.2302

d 3.3126
e 3.3954
f 3.4780
g 3.5606
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k 3.8910
1 3.9736
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y 3.6432
z 3.7258
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Case 5

b 4.223 07 7
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h 4.718935

4.801578





0

- -

x

0
0

0
w

9~I

0

0
*

/
/

/

0

q - - * .~ m r- W LA ~ ~ LU -

0

C IM
w
U'



01I.,
ac__ __ %*



0n

to

Oct,

4-

..... ..... .. ... ..... 0



a 4.307896
b 4.445725
c 4.583554
di 4.72 1383
e 4.8592 12
f 4.997041
g 5.134870
h 5.272699

i 5.410528
j 5.546357
k 5.686 186
1 5.8240 15

m 5.961844
n 6.099673
0 6.237502
p 6.375331



__ 7



CLs

U),

w'

t'9



0

o.

0; r0

CKS

wI
a'U



'-,,-

'~ .A~ *~',

0

0

0~

0

C,
C,,

'4 4-)

1%.

0

CJ
YT'Ajj~'/A..J. 4 II U'

~ 4*

7
A

4'

* . *V
S ~V

4-
4'~'

I. *' I*.
.44' ~

p



f ri nge_
a 3.6182
b 3.7560
c 3.8938
d 4.0316
e 4.1694
f 4.3072
g 4.4450
h 4.5628
i 4.7206
j 4.8584
n 1.0268
0 1.9646
p 2.1024
q 2.2402
r 2.3780
s 2.5158
t 2.6536
u 2.7914
v 2.9292
w 3.0670
x 3.2048
y 3.3426
z 3.4804





x

ow

EU

1
/r



0
_______ __________________________ 0

S
LA

M

S

S

C
S

(
Al

S
S- S

F Al

S
LA

* /1/
/

/
C. S

-~ - --. ~ LA

(§j~ -

*L' in. U' Y n.j n.j - -

V

- 0

w
S w . S

EV \



'I .. .. 0

LOl

4-

to

It

14~

If-



Case Bf

fringe
a 2.0744
b 2. 1376
C 2.2008
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e 2.3272
f 2.3904
x 1.8848
9 1.9480
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Case 9
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